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This paper presents, for the first time, exact closed-form frequency equations and

transverse displacement for thick circular plates with free, soft simply supported, hard

simply supported and clamped boundary conditions based on Reddy’s third-order shear

deformation theory. Hamiltonian and minimum potential energy principles are used to

plate. The new formulation is verified by comparing the results with their counterparts

reported in open literature. Natural frequencies of circular plates with different

boundary conditions are tabulated in dimensionless form for various values of

thickness–radius ratios. The results presented on the basis of exact, closed-form

frequency equations are expected to serve as reliable benchmarks.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Though there are several aspects of interest in the study of circular plates, free vibration analysis for obtaining natural
frequencies plays a fundamental role in producing suitable designs of mechanical systems, from aerospace industry to
microelectromechanical system (MEMS) devices.

A systematic summary of research studies on free vibration of circular plates made by Leissa [1], Weisensel [2] and Liew
et al. [3] indicates that classical thin plate theory (CPT) and first-order shear deformation plate theory (FSDT) were mainly
used by researchers. It is well known that CPT assumptions are satisfactory for low mode computation of thin plates and
lead to inaccuracy in calculating higher modes. In fact, the CPT underestimates deflections and overestimates frequencies.
In order to eliminate the above deficiency of the CPT, Deresiewicz and Mindlin [4] proposed the FSDT, including the effects
of shear deformation and rotary inertia for moderately thick plates. Several papers were devoted to free vibration analysis
of moderately thick circular plates. Rao and Prasad [5] presented the natural frequencies of circular plates on the basis of
the FSDT. Liew et al. [6] developed the Mindlin solutions for flexural vibration of circular and annular plates with and
without ring supports. Liew et al. [7] employed the differential quadrature method (DQM) to investigate axisymmetric free
vibration analysis of circular Mindlin plates with different boundary conditions. Exact first two axisymmetric frequencies
of circular Mindlin plates with different boundary conditions were presented by Irie et al. [8] using Bessel functions. Since
the transverse shear strain is assumed to be constant through the thickness of the plate, a shear correction coefficient is
needed in the FSDT to account for the prediction of uniform shear stress distribution. This coefficient depends on material
properties, geometric dimensions and boundary conditions of the plate.
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Among various higher-order shear deformation plate theories (HSDT) [9–14], the third-order shear deformation theory
of Reddy [13] is the most widely adopted model in the study of plates, especially laminated ones, due to its high efficiency
and simplicity. The HSDT does not need to use any shear correction coefficient since its third-order displacement field
assumption satisfies the zero shear stress condition at the free surfaces. Therefore, the HSDT, approximating radial and
circumferential displacements up to the cubic order, produces better in-plane responses when compared with the FSDT. In
return, their governing equations are much more complicated than those of the FSDT. Reddy and Phan [15] provided exact
solutions for the free vibration and buckling of isotropic, orthotropic and laminated rectangular plates with simply
supported edge condition according to the HSDT. Doong [16] employed the average stress method to present natural
frequencies and buckling loads of simply supported rectangular plates on the basis of the HSDT. Hanna and Leissa [14]
developed a completely HSDT to analyze free vibration of fully free rectangular plates using Rayleigh–Ritz method.
Matsunaga [17] derived a HSDT through Hamilton’s principle to investigate the stability and free vibration analysis of
simply supported rectangular plates by Navier method. Wang et al. [18] derived an exact relationship between the natural
frequencies of Reddy simply supported polygonal plates with those of the classical Kirchhoff ones. According to the FSDT
and HSDT, Shufrin and Eisenberger [19] employed the extended Kantorovich method to present highly accurate numerical
calculation of the natural frequencies and buckling loads for thick rectangular plates with various combinations of
boundary conditions. Based on the FSDT and HSDT, an analysis of free vibrations of functionally graded rectangular plates
with different boundary conditions was presented by Ferreira et al. [20] using the meshless method. There are few works
on the free vibration of circular or annular plates on the basis of the HSDT. Chen and Hwang [21] utilized the average stress
and Galerkin methods to obtain natural frequencies of axisymmetric initially stressed circular and annular plates using the
HSDT. In addition, the finite element method based on the HSDT was used by Chen and Hwang [22] to study axisymmetric
vibration and stability of thick annular plates under internal forces. Based on the HSDT, Hosseini-Hashemi et al. [23]
provided an exact analytical solution for free vibration analysis of thick circular/annular plates, both upper and lower
surfaces of which were in contact with a piezoelectric layer.

All researchers are willing to solve their plate problems exactly using the three-dimensional (3-D) elasticity theory in
which no assumptions are made. However, due to the complex nature of the 3-D free vibration analysis of elastic plates,
exact 3-D elasticity solutions were only yielded by Srinivas et al. [24] for simply supported rectangular plates and by Ding
and Xu [25] for transversely isotropic circular plates under very limited boundary conditions. As a result, 3-D vibration
analysis of circular plates with different boundary conditions must be carried out via numerical approaches, including the
finite element method [26] and the Ritz method [27–32].

It is seen from the literature that exact solutions for vibratory characteristics of plates are available only for simple cases
(i.e., a plate of usually rectangular shape with either simply supported boundary conditions based on the 3-D elasticity
theory or different boundary conditions based on simplified theories such as the CPT and the FSDT) due to the
mathematical and computational complexities.

The main objective of this paper is to present exact solutions to free vibration problem of circular thick plates on the
basis of Reddy’s higher-order plate theory. The exact closed-form characteristic equations along with displacement field
are obtained for the first time in explicit forms for circular plates having free, soft simply supported, hard simply supported
and clamped boundary conditions. The dynamic version of the principle of the virtual displacements, i.e. Hamilton’s
principle, is applied to derive the linear equilibrium equations of the plate. Utilizing the HSDT will exactly satisfy zero
shear stress boundary conditions at the free surfaces. The merit and the high accuracy of the current exact approach are
demonstrated by comparing the results of the present HSDT with those obtained by the DQM [7], the exact FSDT [8] and
the 3-D elasticity theory [28] for different boundary conditions and plate parameters. Then, dimensionless natural
frequencies of circular plates with different boundary conditions are given in tabular form for various values of the
thickness–radius ratios.

2. Mathematical formulation

Consider an isotropic homogeneous thick circular plate of uniform thickness h and radius a. The plate geometry and
dimensions are defined in an orthogonal cylindrical coordinate system (r,y,z) to extract mathematical formulations.
The origin of the coordinate system is taken at the center of the plate in the middle plane, as shown in Fig. 1.

2.1. Displacement field

Based on Reddy’s third-order shear deformation plate theory [13], straight material lines normal to the plate mid-plane
before deformation will no longer remain straight. Thus, the displacement components of an arbitrary point within the
plate domain, designated by u, v and w, are expressed in general form as

uðr; y; z; tÞ ¼ u0ðr;y; tÞþzcrðr; y; tÞþz2jrðr; y; tÞþz3xrðr; y; tÞ (1a)

vðr; y; z; tÞ ¼ v0ðr; y; tÞþzcyðr; y; tÞþz2jyðr; y; tÞþz3xyðr;y; tÞ (1b)

wðr; y; z; tÞ ¼w0ðr; y; tÞ (1c)
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Fig. 1. Geometry and the coordinate system of a circular plate.
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where u0 and v0 denote the in-plane displacements on mid-plane; w0 is the transverse displacement; cr and cy are the
slope rotations in the r�z and y�z planes at z=0, respectively, ji and xi (i=r,y) are the higher-order displacement
parameters defined at the mid-plane, and t is the time.

In this study, since the flexural vibration of the plate is studied, the in-plane displacements u0 and v0 are omitted. For
simplicity, the notation w is used for w0 in the following derivation of the governing equations of the plate. By satisfying
zero shear stress boundary conditions at the top and bottom planes of the plate, the displacement field is then obtained as

uðr; y; z; tÞ ¼ zcr�
4z3

3h2
crþ

@w

@r

� �
(2a)

vðr; y; z; tÞ ¼ zcy�
4z3

3h2
cyþ

@w

r@y

� �
(2b)

wðr; y; z; tÞ ¼Wðr; y; tÞ (2c)

2.2. Strain displacement relations

By neglecting the normal strain in the thickness direction ezz, the strains associated with the displacements in Eq. (2a)–
(2c) are given for small deformation as

err ¼
@u

@r
; eyy ¼

u

r
þ
@v

r@y
; ezz ¼ 0; ery ¼

@v

@r
þ
@u

r@y
�

v

r
; erz ¼

@u

@z
þ
@w

@r
; eyz ¼

@v

@z
þ
@w

r@y
(3a2f)

where q(�)/qr (�=u,v and w), for example, denotes the partial derivative with respect to r; err and eyy are the normal strains
and ery, erz and eyz are the shear strains.

2.3. Hook’s law

The stress–strain relations for the elastic plate can be written as

sr ¼
E

ð1�n2Þ
ðerrþneyyÞ; sy ¼

E

ð1�n2Þ
ðeyyþnerrÞ; sry ¼

E

2ð1þnÞ ery; srz ¼
E

2ð1þnÞ erz; syz ¼
E

2ð1þnÞ eyz (4a2e)

where E and n are Young’s modulus and Poisson’s ratio, respectively.

2.4. Equations of motion

For free vibration, the kinetic energy T and the strain energy V of an elastic circular Reddy plate is expressed as

T ¼
1

2

Z a

0

Z 2p

0

Z h=2

�h=2
rð _u2
þ _v2
þ _w2

Þr dr dydz (5)

and

V ¼
1

2

Z a

0

Z 2p

0

Z h=2

�h=2
ðsrerrþsyeyyþsrzerzþsyzeyzþsryeryÞr dr dydz (6)

where r is the plate density and dot-overscript convention represents the differentiation with respect to the time variable
t. After applying Hamilton’s principle, three equations of motion for dynamic behavior of circular Reddy plates can be
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found as follows:

@Mr

@r
þ

1

r

@Mry

@y
�

4

3h2

@Pr

@r
þ

1

r

@Pry

@y

� �
þ

4

3h2

Py�Pr

r
þ

Mr�My

r
þ

4

h2
Rr�Qr ¼ I3

€cr�
4

3h2
I5
@ €w

@r
(7a)

@Mry

@r
þ
@My

r@y
�

4

3h2

@Pry

@r
þ

1

r

@Py
@y

� �
�

8

3h2

Pry

r
þ

2Mry

r
þ

4

h2
Ry�Qy ¼ I3

€cy�
4

3h2
I5

1

r

@ €w

@y
(7b)

@Qr

@r
þ

1

r

@Qy

@y
�

4

h2

@Rr

@r
þ

1

r

@Ry

@y

� �
þ

4

3h2

@2Pr

@r2
þ

2

r

@2Pry

@r@y
þ

1

r2

@2Py

@y2

 !
þ

4

3h2

2

r

@Pr

@r
�

1

r

@Py
@r
þ

2

r2

@Pry

@y

� �

þ
1

r
Qr�

4

h2
Rr

� �
¼ I1 €w�

4

3h2

� �2

I7
@2 €w

@r2
þ

1

r

@ €w

@r
þ

1

r2

@2 €w

@y2

 !
þ

4

3h2
I5

@ €cr

@r
þ

1

r

@ €cy
@y
þ
€cr

r

 !
(7c)

where the inertias Ii (i=1,2,3,4,5 and 7) are defined by

ðI1; I2; I3; I4; I5; I7Þ ¼

Z h=2

�h=2
rð1; z; z2; z3; z4; z6Þdz (8a)

I3 ¼ I3�
8

3h2
I5þ

16

9h4
I7 (8b)

I5 ¼ I5�
4

3h2
I7 (8c)

and the expressions for bending moments Mr, My, Pr, Py, twisting moments Mry, Pry and shear forces Qr, Qy, Rr, Ry are

ðMi; PiÞ ¼

Z h=2

�h=2
siðz; z

3Þdz; i¼ r; y (9a)

ðMry; PryÞ ¼

Z h=2

�h=2
sryðz; z

3Þdz (9b)

ðQi;RiÞ ¼

Z h=2

�h=2
sizð1; z

2Þdz; i¼ r; y (9c)

2.5. Plate equations in dimensionless form

For generality and convenience in the mathematical formulation, the following dimensionless parameters are
introduced:

R¼
r

a
; Z ¼

z

h
; Y¼ y; d¼

h

a
(10a2d)

For harmonic motion, the displacement field is taken as

uðR;Y; ZÞ ¼
1

h
uðr; y; z; tÞ e�iot (11a)

vðR;Y; ZÞ ¼
1

h
vðr; y; z; tÞ e�iot (11b)

wðR;YÞ ¼
1

a
wðr; y; tÞ e�iot (11c)

where

uðR;Y; ZÞ ¼ Zcr�
4

3
Z3 crþ

@w

@R

� �
(12a)

vðR;Y; ZÞ ¼ Zcy�
4

3
Z3 cyþ

@w

R@Y

� �
(12b)

wðR;YÞ ¼w (12c)

and cjðR;YÞ ¼cjðr; y; tÞ expð�iotÞ (j=r,y).
Introducing the stress resultants in dimensionless form

Mi ¼
Mi

Eh2
e�iot ; i¼ r; y; ry (13a)
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Pi ¼
Pi

Eh4
e�iot ; i¼ r; y; ry (13b)

Q i ¼
Qi

Eh
e�iot ; i¼ r; y (13c)

Ri ¼
Ri

Eh3
e�iot ; i¼ r; y (13d)

we have

ðMr ; PrÞ ¼ d ðP11; P21Þ
@cr

@R
þððP11�2A11Þ; ðP21�2A21ÞÞ

@cy
R@Y

þ
cr

R

 !
�ðP12; P22Þ

@2w

@R2
þ
@w

R@R
þ

@2w

R2@Y2

 !
þðP13; P23Þ

@2w

@R2

" #

(14a)

ðMy; PyÞ ¼ d ððP11�2A11Þ; ðP21�2A21ÞÞ
@cr

@R
þðP11; P21Þ

@cy
R@Y

þ
cr

R

 !
�ðP14;P24Þ

@2w

@R2
þ
@w

R@R
þ

@2w

R2@Y2

 !
�ðP13; P23Þ

@2w

@R2

" #

(14b)

ðMry; PryÞ ¼ d ðA11;A21Þ
@cr

R @Y
þ
@cy
@R
�
cy
R

 !
þðP13; P23Þ

@2w

R @R @Y
�

@w

R2 @Y

 !" #
(14c)

ðQ r ;RrÞ ¼ ðP15; P25Þ crþ
@w

@R

� �
(14d)

ðQ y;RyÞ ¼ ðP15; P25Þ cyþ
@w

R @Y

� �
(14e)

where

ðÎ1; Î2; Î3; Î4; Î5; Î7Þ ¼

Z 1=2

�1=2
ð1; Z; Z2; Z3; Z4; Z6ÞdZ (15a)

~I3 ¼ Î3�
8

3
Î5þ

16

9
Î7 (15b)

~I5 ¼ Î5�
4

3
Î7 (15c)

P11 ¼
1

1�n2
Î3�

4

3
Î5

� �
; P12 ¼

4

3

Î5n
1�n2

; P13 ¼�
4

3

Î5

ð1þnÞ ; P14 ¼�
4Î5

3ðn2�1Þ
; P15 ¼

1

ð1þnÞ
Î1

2
�2Î3

 !
;

A11 ¼
1

2
ð1�nÞP11; P21 ¼

1

1�n2
Î5�

4

3
Î7

� �
; P22 ¼

4

3

Î7n
1�n2

; P23 ¼�
4

3

Î7

ð1þnÞ
; P24 ¼�

4Î7

3ðn2�1Þ
;

P25 ¼
1

ð1þnÞ
Î3

2
�2Î5

 !
; A21 ¼

1

2
ð1�nÞP21 (15d2o)

Substituting Eqs. (14a)–(14e) into the moment and shear force resultants, Eqs. (13a)–(13d), and further into Eqs. (7a)–
(7c) yields

12ð1�n2Þ

d4
d

@Mr

@R
þ

1

R

@Mry

@Y
�

4

3

@Pr

@R
þ

1

R

@Pry

@Y

 !
þ

4

3

Py�Pr

R
þ

Mr�My

R

 !
þ4Rr�Q r

 !
¼�~I3b

2crþ
4

3
~I5b

2 @w

@R
(16a)

12ð1�n2Þ

d4
d
@Mry

@R
þ
@My

R@Y
�

4

3

@Pry

@R
þ

1

R

@Py

@Y

 !
�

8

3

Pry

R
þ

2Mry

R

 !
þ4Ry�Q y

 !
¼�~I3b

2cyþ
4

3
~I5b

2 @w

R@Y
(16b)

12ð1�n2Þ

d4

@Q r

@R
þ

1

R

@Q y

@Y
þ

1

R
ðQ r�4RrÞ�4

@Rr

@R
þ

1

R

@Ry

@Y

 !
þ

4

3
d

@2Pr

@R2
þ

2

R

@2Pry

@R@Y
þ

1

R2

@2Py

@Y2

 ! 

þ
4

3
d

2

R

@Pr

@R
�

1

R

@Py

@R
þ

2

R2

@Pry

@Y

 !!
¼�

Î1

d2
b2wþ

16

9
Î7b

2 @2w

@R2
þ

1

R

@w

@R
þ

1

R2

@2w

@Y2

 !
�

4

3
~I5b

2 @cr

@R
þ

1

R

@cy
@Y
þ
cr

R

 !

(16c)

where b¼oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
is the frequency parameter in dimensionless form.
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2.6. Solution for w, cr and cy

Based on the Helmholtz decomposition, the rotations cr and cy can be expressed in terms of the potential functions
RðR;YÞ and HðR;YÞ as follows:

cr ¼
@R

@R
þ

@H

R @Y
(17a)

cy ¼
@R

R @Y
�
@H

@R
(17b)

The solutions for w, R and H in the Y direction are assumed to take the following forms:

wðR;YÞ ¼ ŵðRÞ cos ðpYÞ (18a)

RðR;YÞ ¼ R̂ðRÞ cos ðpYÞ (18b)

HðR;YÞ ¼ ĤðRÞ sinðpYÞ (18c)

where the non-negative integer p represents the circumferential wavenumber of the corresponding mode shape.
Substituting Eqs. (18a)–(18c) into the slope rotations, Eqs. (17a)–(17b), further into the moment and shear force resultants
Eqs. (14a)–(14e), and then into Eqs. (16a)–(16c) yields

K1DDR̂�K2 Dŵþd2 K3þ
4

3
~I5b

2
� �

DR̂þd2 K3�
16

9
Î7b

2
� �

Dŵþ Î1b
2ŵ ¼ 0 (19a)

@

@R
K4 DR̂�d2

ðK3�
~I3b

2
ÞR̂�K5 Dŵ�d2 K3þ

4

3
~I5b

2
� �

ŵ

� �
þ

p

R
½K6 DĤ�d2

ðK3�
~I3b

2
ÞĤ � ¼ 0 (19b)

p

R
K4 DR̂�d2

ðK3�
~I3b

2
ÞR̂�K5 Dŵ�d2 K3þ

4

3
~I5b

2
� �

ŵ

� �
þ

@

@R
½K6 DĤ�d2

ðK3�
~I3b

2
ÞĤ � ¼ 0 (19c)

The operator D is defined as

D ¼
@2

@R2
þ

@

R@R
�

p2

R2
(20)

and

K1 ¼�
16

3
ð4Î7�3Î5Þ; K2 ¼

64

3
Î7; K3 ¼

12ð1�nÞ
d4

Î1

2
�4Î3þ8Î5

 !
; K4 ¼ 12 Î3�

8

3
Î5þ

16

9
Î7

� �
;

K5 ¼ 12 �
16

9
Î7þ

4

3
Î5

� �
; K6 ¼ 6ð1�nÞ Î3�

8

3
Î5þ

16

9
Î7

� �
(21e2f)

In order to solve three complex coupled differential equations of motion, following steps must be taken so that Eqs.
(19a)–(19c) become uncoupled:
1.
 Eq. (19b) is differentiated with respect to R.

2.
 Eq. (19b) divided by R.

3.
 Eq. (19c) is multiplied by (�p/R).

4.
 If three equations obtained from steps (1)–(3) are added together, we will obtain

D K4 DR̂�d2
ðK3�

~I3b
2
ÞR̂�K5 Dŵ�d2 K3þ

4

3
~I5b

2
� �

ŵ

� �
¼ 0 (22)

Eq. (19c) is differentiated with respect to R.
5.

6.
 Eq. (19c) divided by R.

7.
 Eq. (19b) is multiplied by (�p/R).

8.
 If three equations obtained from steps (5)–(7) are added together, we have

D½K6DĤ�d2
ðK3�

~I3b
2
ÞĤ� ¼ 0 (23)
In order to uncouple R̂ and ŵ in Eq. (22), transformation of variables is employed,

R̂ ¼ xŵ (24)
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where x is constant. Substituting Eq. (24) into Eq. (22) yields

D Dŵ�
d2
�
ðK3�

~I3b
2
ÞxþðK3þð4=3Þ~I5b

2
Þ

�
K4x�K5

ŵ

2
4

3
5¼ 0 (25)

while substituting Eqs. (24) and (25) into Eq. (19a) yields

D Dŵ�
d4
�
ðK3þð4=3Þ~I5b

2
ÞxþðK3�ð16=9ÞÎ7b

2
Þ

��
ðK3�

~I3b
2
ÞxþðK3þð4=3Þ~I5b

2
Þ

�
þ Î1b

2
ðK4x�K5Þ

d2
ðK2�K1xÞ

�
ðK3�

~I3b
2
ÞxþðK3þð4=3Þ~I5b

2
Þ

� ŵ

2
4

3
5¼ 0 (26)

It is observed that the terms within the brackets in Eqs. (25) and (26) have an identical form. Thus, the solution for ŵ

will be unique provided that

d2
�
ðK3�

~I3b
2
ÞxþðK3þð4=3Þ~I5b

2
Þ

�
K4x�K5

¼
d4
��

K3þð4=3Þ~I5b
2
�

xþðK3�ð16=9ÞÎ7b
2
Þ

��
ðK3�

~I3b
2
ÞxþðK3þð4=3Þ~I5b

2
Þ

�
þ Î1b

2
ðK4x�K5Þ

d2
ðK2�K1xÞ

�
ðK3�

~I3b
2
ÞxþðK3þð4=3Þ~I5b

2
Þ

�
(27)

Simplifying Eq. (27) yields a cubic equation which it has three roots x1, x2 and x3. Thus, Eq. (25) can be reduced to

Dŵ�lŵ ¼ 0 (28)

where

l¼
d2
�
ðK3�

~I3b
2
ÞxþðK3þð4=3Þ~I5b

2
Þ

�
K4x�K5

(29)

li(i=1,2,3) can be computed using three roots x1, x2 and x3 getting from Eq. (27). Three Bessel functions ciwi1(p,wir), i=1,2,3,
where wi ¼

ffiffiffiffiffiffiffi
jlij

p
are obtained by substituting li(i=1,2,3) into Eq. (28). ci(i=1,2,3) are constants. Final solution can be given

by

ŵðRÞ ¼
X3

i ¼ 1

ciwi1ðp;wiRÞ (30a)

R̂ðRÞ ¼
X3

i ¼ 1

xi½ciwi1ðp;wiRÞ� (30b)

where

wi1ðp;wiRÞ ¼
JpðwiRÞ; lio0;

IpðwiRÞ; li40;
i¼ 1;2;3

(
(31)

Substituting Eq. (25) into Eqs. (19b) and (19c) gives the following Bessel equation

DĤ�l4Ĥ ¼ 0 (32)

where

l4 ¼
d2
ðK3�

~I3b
2
Þ

K6
(33)

Finally, Ĥ can be expressed as

ĤðRÞ ¼ c4w41ðp;w4RÞ (34)

in which

w4 ¼
ffiffiffiffiffi
l4

p
(35a)

w41ðp;w4RÞ ¼
Jpðw4RÞ; lio0

Ipðw4RÞ; li40

(
(35b)

and c4 is constant. Substituting Eqs. (30) and (34) into Eqs. (18a)–(18c) and then into (17a)–(17b) gives

cr ¼
X3

i ¼ 1

xi ci
@wi1

@R

� �
þ

p

R
c4w41

" #
cosðpYÞ (36a)
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cy ¼�
p

R

X3

i ¼ 1

xiðciwi1Þþc4
@w41

@R

" #
sinðpYÞ (36b)

2.7. Classical boundary conditions

The transverse displacement w along with the slope rotations cr and cy were exactly determined in terms of the
frequency parameter b. Edge of the circular plate may take any classical boundary conditions, including free, soft simply
supported, hard simply supported and clamped.

The boundary conditions at the edge of the circular plate is as follows:
�

Table 1

Compari

Bound

Free

Simply

Clamp
for a free edge

MrðR;YÞ ¼ 0; PrðR;YÞ ¼ 0; Mry�
4

3
Pry ¼ 0

12ð1�n2Þ

d4
Q r�4Rrþ

4

3
d
@Pr

@R
þ

4

3
d

Pr�Py

R
þ

8

3
d

1

R

@Pry

@Y

 !
þ

4

3
~I5b

2cr�
16

9
Î7b

2 @w

@R
¼ 0

(37a2d)

for a soft simply supported edge
�
wðR;YÞ ¼ 0; Mry�
4

3
Pry ¼ 0; MrðR;YÞ ¼ 0; PrðR;YÞ ¼ 0 (38a2d)

for a hard simply supported edge
�
wðR;YÞ ¼ 0; cyðR;YÞ ¼ 0; MrðR;YÞ ¼ 0; PrðR;YÞ ¼ 0 (39a2d)

for a clamped edge
�
wðR;YÞ ¼ 0;
@

@R
½wðR;YÞ� ¼ 0; crðR;YÞ ¼ 0; cyðR;YÞ ¼ 0 (40a2d)
Natural frequencies of circular plates in dimensionless form (b¼oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
) can be calculated by using above boundary

conditions. Exact closed-form characteristic equations of circular plates under different boundary conditions are given in
detail in Appendix A.
3. Results and discussion

Based on Reddy’s higher-order plate theory, a computer code was developed to obtain exact natural frequencies of free
flexural vibration of circular plates with free, soft simply supported, hard simply supported and clamped boundary
conditions while various values of the thickness to radius ratios were used. All frequencies are expressed in terms of the
dimensionless parameter b¼oa2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
. For all calculations here, Poisson’s ratio n has been taken as 0.3. The numbers in

parentheses (p, s) show that the vibrating mode has p nodal diameters and vibrates in the sth mode for the given p value.
A code was developed for the solution of the associated eigenvalue problem.
son of frequency parameters b of circular plates under different boundary conditions with those obtained by exact Mindlin plate theory [8].

ary conditions (p, s) d=0.001 d=0.25

HSDT FSDT [8] %Diff HSDT FSDT [8] %Diff

(0, 0) 9.00305 9.003 0.00 8.27233 8.267 0.06

(0, 1) 38.4429 38.443 0.00 28.6931 28.605 0.31

(0, 2) 87.7488 87.750 0.00 52.9333 52.584 0.66

(0, 3) 156.814 156.818 0.00 77.7821 76.936 1.09

supported (0, 0) 4.93536 4.935 0.00 4.69853 4.696 0.05

(0, 1) 29.7199 29.720 0.00 23.3190 23.254 0.28

(0, 2) 74.1551 74.156 0.00 47.0716 46.775 0.63

(0, 3) 138.315 138.318 0.00 72.4038 71.603 1.11

ed (0, 0) 10.2157 10.216 0.00 8.84637 8.807 0.44

(0, 1) 39.7708 39.771 0.00 27.6223 27.253 1.34

(0, 2) 89.1024 89.104 0.00 50.4941 49.420 2.13

(0, 3) 158.179 158.184 0.00 75.1309 73.054 2.76
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Table 2

Comparison of frequency parameters b of free circular plates with those obtained by the DQM [7].

d Method Mode number (p, s)

(0,0) (0,1) (0,2) (0,3) (0,4) (0,5) (0,6)

0.001 HSDT 9.00305 38.4429 87.7488 156.814 245.622 354.169 482.449

DQM [7] 9.0031 38.443 87.749 156.81 245.62 354.17 482.45

%Diff 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.050 HSDT 8.96879 37.7930 84.473 146.852 222.598 309.411 405.201

DQM [7] 8.9686 37.787 84.443 146.76 222.38 308.98 404.44

%Diff 0.00 0.02 0.03 0.06 0.10 0.14 0.19

0.100 HSDT 8.86880 36.0613 76.7776 126.564 182.092 241.141 302.296

DQM [7] 8.8679 36.041 76.676 126.27 181.46 239.98 300.38

%Diff 0.01 0.06 0.13 0.23 0.35 0.48 0.63

0.150 HSDT 8.71147 33.7157 68.0103 106.895 147.866 189.621 231.272

DQM [7] 8.7095 33.674 67.827 106.40 146.83 187.79 228.39

%Diff 0.02 0.12 0.27 0.46 0.70 0.97 1.25

0.200 HSDT 8.50842 31.1748 59.9152 90.7511 121.931 151.773 172.673

DQM [7] 8.5051 31.111 59.645 90.645 120.57 149.63 171.18

%Diff 0.04 0.20 0.45 0.12 1.12 1.41 0.87

0.250 HSDT 8.27233 28.6931 52.9333 77.7821 100.944 115.596 127.963

DQM [7] 8.2674 28.605 52.584 76.936 99.545 114.53 126.34

%Diff 0.06 0.31 0.66 1.09 1.39 0.92 1.27

Table 3

Comparison of frequency parameters b of hard simply supported circular plates with those obtained by the DQM [7].

d Method Mode number (p, s)

(0,0) (0,1) (0,2) (0,3) (0,4) (0,5) (0,6)

0.001 HSDT 4.93536 29.7199 74.1551 138.315 222.206 325.830 449.184

DQM [7] 4.9351 29.720 74.155 138.31 222.21 325.83 449.18

%Diff 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.050 HSDT 4.92479 29.3272 71.7804 130.429 203.000 287.179 380.823

DQM [7] 4.9247 29.323 71.756 130.35 202.81 286.79 380.13

%Diff 0.00 0.01 0.03 0.06 0.09 0.13 0.18

0.100 HSDT 4.89421 28.2547 66.0243 113.823 168.091 226.401 287.219

DQM [7] 4.8938 28.240 65.942 113.57 167.53 225.34 285.44

%Diff 0.01 0.05 0.12 0.22 0.33 0.47 0.62

0.150 HSDT 4.84480 26.7445 59.2143 97.2093 137.915 179.958 222.705

DQM [7] 4.8440 26.715 59.062 96.775 136.98 178.23 219.86

%Diff 0.02 0.11 0.26 0.45 0.68 0.96 1.28

0.200 HSDT 4.77871 25.0414 52.7387 83.3847 115.184 147.500 166.383

DQM [7] 4.7773 24.994 52.514 82.766 113.87 145.13 166.29

%Diff 0.03 0.19 0.43 0.74 1.14 1.61 0.056

0.250 HSDT 4.69853 23.3190 47.0716 72.4038 98.2801 108.326 124.499

DQM [7] 4.6963 23.254 46.775 71.603 96.609 108.27 121.50

%Diff 0.05 0.28 0.63 1.11 1.70 0.05 2.41
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3.1. Verification of the present formulations

In this subsection, three illustrative examples are presented in the following to demonstrate the high accuracy of the
current exact solution procedure. The percentage difference given in Tables 1–5 is defined as follows:

% Diff ¼
½ðExact HSDTÞ�ðOther methodsÞ�

ðExact HSDTÞ
� 100

Example 1. Frequency parameters of circular plates under free, hard simply supported and clamped boundary conditions
are presented in Table 1 for two values of the thickness to radius ratios d=0.001 and 0.25. It should be noted that the exact
results reported by Irie et al. [8] were based on the FSDT. It is seen from Table 1 that both theories yield identical results for
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Table 4

Comparison of frequency parameters b of clamped circular plates with those obtained by the DQM [7].

d Method Mode number (p, s)

(0,0) (0,1) (0,2) (0,3) (0,4) (0,5) (0,6)

0.001 HSDT 10.2157 39.7708 89.1024 158.179 246.994 355.543 483.825

DQM [7] 10.216 39.771 89.102 158.18 246.99 355.54 483.82

%Diff 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.050 HSDT 10.1459 38.8706 85.0647 146.601 221.173 306.548 400.72

DQM [7] 10.145 38.855 84.995 146.40 220.73 305.71 399.32

%Diff 0.01 0.04 0.08 0.14 0.20 0.27 0.35

0.100 HSDT 9.94614 36.5489 75.954 124.057 177.862 235.388 295.369

DQM [7] 9.9408 36.479 75.664 123.32 176.41 232.97 291.71

%Diff 0.05 0.19 0.38 0.59 0.82 1.03 1.24

0.150 HSDT 9.64191 33.5525 66.129 103.395 143.253 184.600 226.836

DQM [7] 9.6286 33.393 65.551 102.09 140.93 180.99 221.62

%Diff 0.14 0.47 0.87 1.26 1.62 1.96 2.30

0.200 HSDT 9.26503 30.4749 57.533 87.3224 118.491 150.371 176.378

DQM [7] 9.2400 30.211 56.682 85.571 115.55 145.94 174.97

%Diff 0.27 0.87 1.48 2.01 2.48 2.95 0.80

0.250 HSDT 8.84637 27.6223 50.4941 75.1309 100.568 118.332 127.098

DQM [7] 8.8068 27.253 49.420 73.054 97.198 117.90 122.43

%Diff 0.45 1.34 2.13 2.76 3.35 0.37 3.67
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thin circular plates. However, the difference between two exact solutions increases for thicker plates with higher degrees
of edge constraint, particularly at the higher modes of vibration. This is due to the fact that the Mindlin model cannot
capture the boundary layer term for the clamped edge, while the higher-order shear deformation theories can do a much
better job [33]. Furthermore, unlike the FSDT, the HSDT not only requires no shear correction factor but also models a plate
with smaller displacements and higher rigidity. It is worth noting that all results obtained on the basis of the HSDT are
greater than those of the FSDT.
Example 2. The first seven non-dimensional frequency parameters b of circular plates subjected to free, hard simply
supported and clamped boundary conditions are presented in Tables 2–4 for a wide range of thickness to radius ratios from
d=0.001 to 0.25. The present exact results are found to be in good agreement with those reported by Liew et al. [7] using
the DQM based on the FSDT. Note that observations in Tables 2–4 are similar to those in Table 1. In other words, the
discrepancy becomes more significant with an increase in the thickness–radius ratio, wavenumber and boundary
constraints.
Example 3. Table 5 exhibits the comparison of the frequency parameters b of circular plates with free, soft simply
supported, hard simply supported and clamped boundary conditions for various values of thickness–radius ratios (d=0.01,
0.1, 0.2 and 0.3) with those obtained using the Ritz 3-D method by Liew and Yang [28]. The discrepancy between the
results of these two methods is very small and does not exceed 0.94% for the worst case. It can obviously be seen that all
present results are smaller than those obtained by the Ritz 3-D solution. This is due to the fact that natural frequencies by
the Ritz method are upper bounds of the exact ones, unless an exact eigenfunction of free vibration for the trial function is
assumed.
3.2. Benchmark data

According to the above verification of the current approach, the authors have gained a strong position to give
benchmark frequency results for comparisons with those from other methods. Exact natural frequency parameters of
circular thin, moderately thick and thick plates under different classical boundary conditions are presented in Tables 6–9
for a large spectrum of values of thickness–radius ratios, varying from 0.01 to 0.35. The results are tabulated for three
circumferential wavenumbers (p=0, 1, 2 and 3) while the first three modes (s=0 and 1) are considered for each value of p. It
is seen from Tables 6–9 that the frequency parameters b decrease with an increase in the thickness–radius ratio d. Such
behavior is due to the influence of rotary inertia and shear deformations. It can also be observed that the frequency
parameters b decrease when less restraining boundary is used at the edge of the plate. This is attributed to the fact that
higher constraints at the edges increase the flexural rigidity of the plate, leading to a higher frequency response.
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Table 5

Comparison of frequency parameters b of circular plates under different boundary conditions with those obtained by 3-D Ritz solution [28].

d Method Mode number (p, s)

(0,0) (0,1) (1,0) (2,0) (3,0)

(a) Free circular plates
0.01 HSDT 9.00175 38.4164 20.4613 5.35455 12.4238

3D Ritz [28] 9.0018 38.417 20.466 5.3570 12.433

%Diff 0.00 0.00 �0.02 �0.05 �0.07

0.1 HSDT 8.8688 36.0613 19.7172 5.27842 12.0675

3D Ritz [28] 8.8720 36.132 19.738 5.2795 12.074

%Diff �0.04 �0.20 �0.10 �0.02 �0.05

0.2 HSDT 8.50842 31.1748 17.9983 5.11607 11.3233

3D Ritz [28] 8.5194 – 18.056 5.1185 11.337

%Diff �0.13 – �0.32 �0.05 �0.12

0.3 HSDT 8.01507 26.3883 16.0153 4.89609 10.4176

3D Ritz [28] 8.0344 � 16.102 4.9005 10.439

%Diff �0.24 � �0.54 �0.09 �0.20

(b) Soft simply supported circular plates
0.01 HSDT 4.93473 29.7039 13.8892 25.5805 39.8828

3D Ritz [28] 4.9360 29.706 13.894 25.597 39.918

%Diff �0.03 �0.01 �0.035 �0.06 �0.09

0.1 HSDT 4.89421 28.2547 13.5142 24.3263 36.9926

3D Ritz [28] 4.8975 28.310 13.529 24.371 37.091

%Diff �0.07 �0.20 �0.11 �0.18 �0.27

0.2 HSDT 4.77871 25.0414 12.6324 21.7279 31.6336

3D Ritz [28] 4.7876 25.188 12.677 21.845 31.859

%Diff �0.19 �0.589 �0.359 �0.54 �0.71

0.3 HSDT 4.60704 21.6757 11.5435 18.9731 26.6333

3D Ritz [28] 4.6234 21.879 11.618 19.142 –

%Diff �0.35 �0.94 �0.64 �0.89 –

(c) Hard simply supported circular plates
0.01 HSDT 4.93473 29.7039 13.8947 25.6014 39.9281

3D Ritz [28] 4.9360 29.706 13.896 25.603 39.930

%Diff �0.03 �0.01 �0.01 �0.01 0.00

0.1 HSDT 4.89421 28.2547 13.5657 24.5128 37.3785

3D Ritz [28] 4.8975 28.310 13.580 24.555 37.472

%Diff �0.07 �0.20 �0.10 �0.17 �0.25

0.2 HSDT 4.77871 25.0414 12.7196 22.0128 32.1626

3D Ritz [28] 4.7876 25.188 12.764 22.130 32.389

%Diff �0.19 �0.58 �0.35 �0.53 �0.70

0.3 HSDT 4.60704 21.6757 11.6491 19.2838 27.1569

3D Ritz [28] 4.6234 21.879 11.723 19.453 –

%Diff �0.35 �0.94 �0.63 �0.88 –

(d) Clamped circular plates
0.01 HSDT 10.2130 39.7336 21.2487 34.8467 50.9670

3D Ritz [28] 10.250 39.878 21.326 34.974 51.155

%Diff �0.36 �0.36 �0.36 �0.36 �0.37

0.1 HSDT 9.94614 36.5489 20.1993 32.2634 45.8905

3D Ritz [28] 9.9909 36.744 20.297 32.430 46.140

%Diff �0.45 �0.53 �0.48 �0.52 �0.54

0.2 HSDT 9.26503 30.4749 17.8550 27.2148 37.1513

3D Ritz [28] 9.3225 30.649 17.963 27.366 37.338

%Diff �0.62 �0.57 �0.60 �0.56 �0.50

0.3 HSDT 8.4113 25.1011 15.3850 22.6165 30.0729

3D Ritz [28] 8.4676 25.150 15.453 22.667 30.093

%Diff �0.67 �0.19 �0.44 �0.22 �0.07
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4. Concluding remarks

In this paper, exact closed-form solutions were presented to investigate free vibration behavior of circular plates under
free, soft simply supported, hard simply supported and clamped boundary conditions based on Reddy’s third-order shear
deformation plate theory. Governing equations for freely vibrating circular plates were derived by applying Hamilton’s
principle. The exact closed-form characteristic equations along with the transverse displacement were presented for
circular plates with all classical boundary conditions. The accuracy of the current solution was verified by comparing the
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Table 6

Frequency parameters b of free circular plates with different thickness to radius ratios.

d Mode number (p, s)

(0,0) (0,1) (1,0) (1,1) (2,0) (2,1) (3,0) (3,1)

0.01 9.00175 38.4164 20.4613 59.7396 5.35449 35.2141 12.4237 52.9044

0.05 8.96879 37.7930 20.2618 58.2289 5.32987 34.6044 12.3120 51.5505

0.10 8.86880 36.0613 19.7172 54.3066 5.27842 33.0529 12.0675 48.2702

0.15 8.71147 33.7157 18.9292 49.4351 5.20616 30.9798 11.7286 44.1964

0.20 8.50842 31.1748 17.9983 44.5751 5.11607 28.7256 11.3233 40.0783

0.25 8.27233 28.6931 17.0078 40.1354 5.01154 26.5048 10.8788 36.2652

0.30 8.01507 26.3883 16.0153 36.2100 4.89609 24.4214 10.4176 32.8598

0.35 7.74669 24.2979 15.0543 32.7549 4.77299 22.5107 9.9562 29.8517

Table 7

Frequency parameters b of soft simply supported circular plates with different thickness to radius ratios.

d Mode number (p, s)

(0,0) (0,1) (1,0) (1,1) (2,0) (2,1) (3,0) (3,1)

0.01 4.93474 29.7039 13.8892 48.4311 25.5805 70.0078 39.8828 94.3424

0.05 4.92479 29.3272 13.7851 47.4220 25.2197 67.8979 39.0327 90.5505

0.10 4.89421 28.2547 13.5142 44.7285 24.3263 62.6278 36.9926 81.6577

0.15 4.84480 26.7445 13.1169 41.2471 23.1045 56.3531 34.3771 71.8455

0.20 4.77871 25.0414 12.6324 37.6477 21.7279 50.3339 31.6336 63.0152

0.25 4.69853 23.3190 12.0979 34.2762 20.3250 45.0250 29.0164 55.5912

0.30 4.60704 21.6757 11.5435 31.2578 18.9731 40.4885 26.6333 49.4677

0.35 4.50697 20.1569 10.9909 28.6087 17.7109 36.6465 24.5111 44.4149

Table 8

Frequency parameters b of hard simply supported circular plates with different thickness to radius ratios.

d Mode number (p, s)

(0,0) (0,1) (1,0) (1,1) (2,0) (2,1) (3,0) (3,1)

0.01 4.93474 29.7039 13.8947 48.4359 25.6014 70.0270 39.9281 94.3852

0.05 4.92479 29.3272 13.8122 47.4451 25.3209 67.9868 39.2510 90.7438

0.10 4.89421 28.2547 13.5657 44.7685 24.5128 62.7737 37.3785 81.9578

0.15 4.84480 26.7445 13.1886 41.2965 23.3519 56.5240 34.8624 72.1795

0.20 4.77871 25.0414 12.7196 37.7014 22.0128 50.5116 32.1626 63.3481

0.25 4.69853 23.3190 12.1962 34.3314 20.6291 45.2019 29.5530 55.9130

0.30 4.60704 21.6757 11.6491 31.3134 19.2838 40.6630 27.1569 49.7802

0.35 4.50697 20.1569 11.1008 28.6645 18.0201 36.8213 25.0113 44.7274

Table 9

Frequency parameters b of clamped circular plates with different thickness to radius ratios.

d Mode number (p, s)

(0,0) (0,1) (1,0) (1,1) (2,0) (2,1) (3,0) (3,1)

0.01 10.2130 39.7336 21.2487 60.7438 34.8467 84.4223 50.9670 110.750

0.05 10.1459 38.8706 20.9760 58.8329 34.1503 80.8872 49.5448 104.900

0.10 9.94614 36.5489 20.1993 53.9980 32.2634 72.4899 45.8905 91.8557

0.15 9.64191 33.5525 19.1006 48.2816 29.7933 63.3388 41.4558 78.6631

0.20 9.26503 30.4749 17.8550 42.8755 27.2148 55.2584 37.1513 67.6580

0.25 8.84637 27.6223 16.5911 38.1773 24.7887 48.5935 33.3357 58.9236

0.30 8.41130 25.1011 15.3850 34.2466 22.6165 43.1844 30.0729 52.0154

0.35 7.97828 22.9183 14.2728 30.9574 20.7150 38.7781 27.3141 46.4874

Sh. Hosseini-Hashemi et al. / Journal of Sound and Vibration 329 (2010) 3382–3396 3393



ARTICLE IN PRESS

Sh. Hosseini-Hashemi et al. / Journal of Sound and Vibration 329 (2010) 3382–33963394
present frequency parameters with those available in the literature. Although both FSDT and HSDT solutions acquired the
same frequency parameters for thin circular plates, the discrepancy increased for thicker plates with higher degrees of
edge constraint, especially at the higher modes of vibration. It was also seen that as compared to the DQM solution of Liew
et al. [7] and the FSDT solution of Irie et al. [8], the proposed HSDT method was closer to the 3-D elasticity solution of Liew
and Yang [28]. In order to examine the correctness of other analytical and numerical methods given in the future, exact
vibration frequencies of circular thin, moderately thick and thick plates with different boundary conditions were tabulated
to serve as the benchmark data.
Appendix A. Exact closed-form characteristic equations

There exist closed-form exact solutions to the characteristic equations of circular plates under free, soft simply
supported, hard simply supported and clamped boundary conditions. After expanding the determinant and performing
mathematical manipulations, exact characteristic equations can be listed below for each individual case.

Case 1: Clamped circular plates

�x1ðL3ð1Þw21ð1Þ�L2ð1Þw31ð1ÞÞðL1ð1ÞL4ð1Þ�p2w11ð1Þw41ð1ÞÞþx2ðL3ð1Þw11ð1Þ�L1ð1Þw31ð1ÞÞðL2ð1ÞL4ð1Þ

�p2w21ð1Þw41ð1ÞÞ�x3ðL2ð1Þw11ð1Þ�L1ð1Þw21ð1ÞÞðL3ð1ÞL4ð1Þ�p2w31ð1Þw41ð1ÞÞ ¼ 0 (A.1)

where

wi1ðRÞ ¼wi1ðp;wiRÞ; LiðRÞ ¼
@

@R
wi1ðp;wiRÞ; i¼ 1;2;3;4 (A.2,3)

Case 2: Hard simply supported circular plates

L4ð1Þ
�
ð�a3L2þa2L3Þw11ð1Þþða3L1�a1L3Þw21ð1Þþð�a2L1þa1L2Þw31ð1Þ

�
þp
�
ðx2�x3Þða4L1�a1L4Þw21ð1Þw31ð1Þ

þw11ð1Þ
�
ðx1�x2Þða4L3�a3L4Þw21ð1Þ�ðx1�x3Þða4L2�a2L4Þw31ð1Þ

��
¼ 0 (A.4)

where

ai ¼�
1

3
ð4Gþð�3Fþ4GÞxiÞðqið1ÞþnðLið1Þ�p2wi1ð1ÞÞÞ; i¼ 1;2;3 (A.5)

a4 ¼�
1

3
ð3F�4GÞpðn�1ÞðL4ð1Þ�w41ð1ÞÞ (A.6)

Li ¼�
1

3

�
4Fþð�3Cþ4FÞxi

��
qið1Þþn

�
Lið1Þ�p2wi1ð1Þ

��
; i¼ 1;2;3 (A.7)

L4 ¼�
1

3
ð3C�4FÞpðn�1Þ

�
L4ð1Þ�w41ð1Þ

�
(A.8)

qiðRÞ ¼
@

@R
LiðRÞ; i¼ 1;2;3;4 (A.9)

Case 3: Soft simply supported circular plates

�ðL4C3þL3C4Þða2w11ð1Þ�a1w21ð1ÞÞþa3

�
ðL4C2þL2C4Þw11ð1Þ�ðL4C1þL1C4Þw21ð1Þ

�
þ

�
a2ðL4C1þL1C4Þ�a1ðL4C2þL2C4Þ

�
w31ð1Þþa4

�
C3ðL2w11ð1Þ�L1w21ð1ÞÞþL3ð�C2w11ð1Þ

þC1w21ð1ÞÞþð�L2C1þL1C2Þw31ð1Þ
�
¼ 0 (A.10)

where

Ci ¼
2

9
pð�12Fþ16Gþð9C�24Fþ16GÞxiÞðLið1Þ�wi1ð1ÞÞ; i¼ 1;2;3 (A.11)

C4 ¼ C�
8

3
Fþ

16

9
G

� �
ðL4ð1Þ�q4ð1Þ�p2w41ð1ÞÞ (A.12)

Case 4: Free circular plates

a4ðL3ðm2C1�m1C2ÞþL2ð�m3C1þm1C3ÞþL1ðm3C2�m2C3ÞÞþa3ðL4ð�m2C1þm1C2Þ

þL2ðm4C1þm1C4Þ�L1ðm4C2þm2C4ÞÞþa2

�
L4ðm3C1�m1C3Þ�L3ðm4C1þm1C4ÞþL1ðm4C3þm3C4Þ

�
þa1ðL4ð�m3C2þm2C3ÞþL3ðm4C2þm2C4Þ�L2ðm4C3þm3C4ÞÞ ¼ 0 (A.13)
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where

J1 ¼
12ð1�nÞ

d4

Î1

2
�4Î3þ8Î5

 !
þ

4

3
~I5b

2; J2 ¼
12ð1�nÞ

d4

Î1

2
�4Î3þ8Î5

 !
�

16

9
Î7b

2

J3 ¼
16ð3Î5�4Î7Þðn�2Þ

3d2
; J4 ¼�

16ð3Î5�4Î7Þðn�1Þ

3d2
; J5 ¼�

64Î7

3d2

J6 ¼
64Î7ðn�2Þ

3d2
; J7 ¼

16ð3Î5�4Î7Þ

3d2
; J8 ¼�

64Î7ðn�3Þ

3d2

(A.14)

and

mi ¼ p2ðJ7ai�J3ai�J8Þwi1ð1ÞþðJ1aiþ J2�J7aip
2�J7ai�J4aip

2�J6p2�J5ÞLið1ÞþðJ7aiþ J5Þðqið1Þþsið1ÞÞ; i¼ 1;2;3 (A.15)

m4 ¼ pðJ1�p2J4Þw41ð1Þ�pðJ7þ J3ÞL4ð1Þ (A.16)

sðRÞ ¼
@

@R
qðRÞ (A.17)

Appendix B. Exact closed-form transverse displacement

By dropping the lengthy mathematical manipulations associated with deriving the explicit closed-form solutions for the
transverse displacement w(R,Y), we present below only the final relation in terms of R, Y and d:

Case 1: Clamped circular plates

wðR;YÞ ¼ �
ð�L3ð1ÞL4ð1Þw21ð1ÞþL2ð1ÞL4ð1Þw31ð1ÞÞ

ðx½2��x½1�ÞL3ð1Þw11ð1Þw21ð1Þþ
�
ðx½1��x½3�ÞL2ð1Þw11ð1Þþðx½3��x½2�ÞL1ð1Þw21ð1Þ

�
w31ð1Þ

w11ðRÞ

2
4

þ
ð�L3ð1ÞL4ð1Þw11ð1ÞþL1ð1ÞL4ð1Þw31ð1ÞÞ

ðx½2��x½1�ÞL3ð1Þw11ð1Þw21ð1Þþððx½1��x½3�ÞL2ð1Þw11ð1Þþðx½3��x½2�ÞL1ð1Þw21ð1ÞÞw31ð1Þ
w21ðRÞ

�
ð�L2ð1ÞL4ð1Þw11ð1ÞþL1ð1ÞL4ð1Þw21ð1ÞÞ

ðx½2��x½1�ÞL3ð1Þw11ð1Þw21ð1Þþððx½1��x½3�ÞL2ð1Þw11ð1Þþðx½3��x½2�ÞL1ð1Þw21ð1ÞÞw31ð1Þ
w31ðRÞ

�
cosðpYÞ

(B.1)

Case 2: Soft simply supported circular plates

wðR;YÞ ¼ �
a4C3w21ð1Þþa3C4w21ð1Þ�a4C2w31ð1Þ�a2C4w31ð1Þ

C3ða1w21�a2w11Þþa3ðC2w11�C1w21Þþw31ð1Þða2C1�a1C2Þ
w11ðRÞ

"

þ
a4C3w11ð1Þþa3C4w11ð1Þ�a4C1w31ð1Þ�a1C4w31ð1Þ

C3ða1w21�a2w11Þþa3ðC2w11�C1w21Þþw31ð1Þða2C1�a1C2Þ
w21ðRÞ

�
a4C2w11ð1Þþa2C4w11ð1Þ�a4C1w21ð1Þ�a1C4w21ð1Þ

C3ða1w21�a2w11Þþa3ðC2w11�C1w21Þþw31ð1Þða2C1�a1C2Þ
w31ðRÞ

#
cosðpYÞ (B.2)

where

C i ¼
2

9
ð�12Fþ16Gþð9C�24Fþ16GÞxiÞðLið1Þ�wi1ð1ÞÞ; i¼ 1;2;3 (B.3)

Case 3: Free circular plates

wðR;YÞ ¼
�a4C3m2�a3C4m2þa4C2m3þa2C4m3�a3C2m4þa2C3m4

a3C2m1�a2C3m1�a3C1m2þa1C3m2þa2C1m3�a1C2m3

w11ðRÞ

"

�
�a4C3m1�a3C4m1þa4C1m3þa1C4m3�a3C1m4þa1C3m4

a3C2m1�a2C3m1�a3C1m2þa1C3m2þa2C1m3�a1C2m3

w21ðRÞ

�
a4C2m1þa2C4m1�a4C1m2�a1C4m2þa2C1m4�a1C2m4

a3C2m1�a2C3m1�a3C1m2þa1C3m2þa2C1m3�a1C2m3

w31ðRÞ

#
cosðpYÞ (B.4)
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